
Abstraction for Ef�ciently Computing Most Probable Explanations in Bayesian
Networks

Ole J. Mengshoel
Carnegie Mellon University
NASA Ames Research Center

Mail Stop 269-3
Moffett Field, CA 94035
Ole.J.Mengshoel@nasa.gov

Abstract

Two factors that may severly slow down compu-
tation of answers to Bayesian network queries are
high graph connectivity (potentially causing high
treewidth) and high node cardinalities. In this pa-
per, where we address the problem of high node
cardinalities by means of abstraction, two contri-
butions are made. First, we formulate abstraction
in Bayesian network by means of set partitioning,
and make connections to previous work using ab-
straction hierarchies. Second, we investigate the
computation of most probable explanations (MPEs)
in Bayesian networks, when some nodes are ab-
stracted. In particular, we consider the bene�t of
using Bayesian network abstraction when compil-
ing Bayesian networks into join trees or arithmetic
circuits, which are then used for ef�cient on-line
computation in resource-bounded environments.

1 Introduction
Abstraction hierarchies have seen widespread use within
many areas of arti�cial intelligence. There are several pur-
poses of abstraction, including (i) improving human compre-
hension and interaction [Chang and Fung, 1991], (ii) facilitat-
ing machine learning and knowledge acquisition [Friedman
and Goldszmidt, 1996; Zhang and Honavar, 2004; desJardins
et al., 2008], and (iii) improving the speed or quality of com-
putation [Liu and Wellman, 2002; Sharma and Poole, 2003;
Verma et al., 2003].
Computing most probable explanations in Bayesian net-

works (BNs) [Pearl, 1988], which has application in the ar-
eas of diagnosis, image processing, and error correcting de-
coding, is the main focus of this paper. Exactly comput-
ing most probable explanations (MPEs) in BNs is compu-
tationally hard [Shimony, 1994], and computational dif�cul-
ties arise quite regularly in complex application domains, es-
pecially when computation is severely resource-bounded in
time, space, or both. We identify at least two causes of com-
putational dif�culty for discrete BNs: (i) The topology and
connectedness of a BN's underlying directed acyclic graph
and (ii) the high cardinality of a signi�cant set of discrete
BN nodes. Our emphasis in this paper is on this latter cause;

however when these two causes co-occur they are particu-
larly devastating. Discrete BN nodes can have high cardi-
nalities for several reasons: First, they may represent discrete
parameters, for example categorical parameters, that inher-
ently take a large number of values [Sharma and Poole, 2003;
desJardins et al., 2008]. A concrete example of this might
be URLs on the Web, which clearly are discrete and massive
in number. A second reason for high-cardinality, discrete BN
nodes is that they are used to represent continuous parameters
[Liu and Wellman, 2002]. The number of states grows expo-
nentially with the number of bits used when representing a
quantized continuous parameter. Again, if a �ne-grained dis-
cretization is used in BN nodes, the dif�culty of computation
may become a major challenge.
To attack the problem of large state spaces slowing down

the speed of probabilistic computation using BNs, we con-
sider abstraction. We focus here on the fundamentals of ab-
straction in BNs by carefully formulating abstraction using
set partitioning, and making connections to previous work us-
ing abstraction hierarchies [Friedman and Goldszmidt, 1996;
Zhang and Honavar, 2004; desJardins et al., 2008]. We ex-
tend previous work on BN abstraction and re�nement [Chang
and Fung, 1991; Liu and Wellman, 2002; Sharma and Poole,
2003] by focusing on MPE computation. In addition,
we consider the bene�t of using abstraction when compil-
ing BNs into join trees [Lauritzen and Spiegelhalter, 1988;
Jensen et al., 1990] or arithmetic circuits [Darwiche, 2003;
Chavira and Darwiche, 2007], which are then used for ef�-
cient on-line computation in resource-bounded environments.
The remainder of this paper is organized as follows. Con-

cepts related to Bayesian network and their approximation are
�rst presented in Section 2. We focus on abstraction and re-
�nement in Bayesian networks in Section 3, and in Section 4
we discuss the role of abstraction when computing MPEs for
BNs. A case study is presented in Section 5, while Section 6
concludes and mentions future work.

2 Preliminaries
A Bayesian network (BN) structures a multi-variate proba-
bility distribution by using a directed acyclic graph (DAG)
in which nodes represent random variables. A (discrete)
BN node V is a discrete random variable with a mutually
exclusive, exhaustive, and �nite state space 
V = 
(V ) =
fv1; :::; vmg. We use the notation �V for the parents of a



node V ,	V for the children of V , and �V for an instantiation
of all parents �V of V . The notion of a Bayesian network
can now be introduced.

De�nition 1 (Bayesian network) A Bayesian network is a
tuple � = (V , E, P ), where (V ;E) is a DAG with nodes
V = fV1; :::Vng, edges E = fV1; :::; Vmg, and where P
= fPr(V1 j �V1); : : : ;Pr(Vn j �Vn)g is a set of conditional
probability tables (CPTs). For each node Vi 2 V there is
one CPT, which de�nes a conditional probability distribution
Pr(Vi j �Vi ).

The independence assumptions induced by (V ;E) in Def-
inition 1 imply the following joint distribution:

Pr(v) = Pr(V1 = v1; : : : ; Vn = vn) =
nY
i=1

Pr(vi j �Vi);

(1)
where �Vi � fVi+1; : : : ; Vng.
A BN can be provided evidence e by clamping evidence

nodes to their respective observed states. Taking into ac-
count the evidence, different probabilistic queries can be an-
swered using Bayesian networks. These probabilistic queries
include marginals, most probable explanation (MPE), and
maximum aposteriori probability (MAP). We emphasize here
MPE computation, and let MPE(�, e) denote the set of MPEs
computed for a BN � under evidence e. In order to com-
pute MPEs ef�ciently and predictably in resource-bounded
environments, we compile a BN � into a join tree [Lauritzen
and Spiegelhalter, 1988; Jensen et al., 1990] or an arithmetic
circuit [Darwiche, 2003; Chavira and Darwiche, 2007] off-
line. Such a compiled data structure � is then used to compute
MPE(�, e) on-line.
Abstraction and aggregation approaches have both been

described in the BN literature [Chang and Fung, 1991;
Liu and Wellman, 2002]. Abstraction is essentially to replace
several node states with one node state. Abstraction is also
known as state-space abstraction [Liu and Wellman, 2002],
coarsening [Chang and Fung, 1991], or behavioral abstrac-
tion [Genesereth, 1984]. Aggregation is essentially to replace
several nodes with one node. Aggregation is also known as
structural abstraction [Liu and Wellman, 2002] or hierarchi-
cal abstraction.
In this paper we emphasize abstraction and now consider a

classical approach [Chang and Fung, 1991]. Chang and Fung
introduced the two operations of REFINE and COARSEN for
discrete BNs [Chang and Fung, 1991]. COARSEN eliminates
states for a node (it is an abstraction operation), while REFINE
introduces new states for a node (it is a re�nement operation).
Both operations, which are discussed in more detail in Sec-
tion 3, take as input a target node and a desired re�nement or
coarsening, and then output a revised conditional probability
distribution for the target node and for the target node's chil-
dren. Both operations are based on constraints on the Markov
blanket of the target node. Two classes of operations are de-
scribed: external operations and internal operations. External
operations change a BN's topology while internal operations,
which we emphasize in this paper, maintain the topology.

3 Abstraction in Bayesian Networks
In this section we discuss abstraction for BN nodes and BNs,
and make connections to set partitions and hierarchies (DAGs
that are trees) as well as previous work in the area. This
section lays the foundation for Section 4, where we consider
MPE computation.

3.1 Abstraction and Set Partitions
We make clear the close relationship between abstractions
and set partitions. Analogous to the lattice or partial order
of set partitions, there is a lattice of abstractions, and we in-
troduce a notation to clearly state that a node X̂'s state space

X̂ abstracts the state space 
X of another node X .

De�nition 2 (Set partitioning of node) Consider a BN
node X with state space 
X = fx1, : : :, xmg. Let P(
X)
be the set partitions of 
X , and let Pi, Pj 2 P(
X). We say
that Pi re�nes Pj (or Pj abstracts Pi) and write Pi � Pj if
each block in Pi is a subset of some block in Pj .
As an example, suppose that 
X = fa; b; cg. Then the set

partitions for 
X are P(
X) = ffag, fbg, fcgg, ffa, bg,
fcgg, ffa, cg, fbgg, ffag, fb, cgg, and ffa, b, cgg, and we
have for example ffag, fbg, fcgg � ffa, bg, fcgg.
There is a natural one-to-one mapping between a lattice of

set partitions P and a lattice of BN node state spaces S, which
is closely related to an abstraction lattice A.
De�nition 3 (State space mapping) Let P1, P2 2 P and S1,
S2 2 S. Let fbi;1, : : :, bi;�(i)g = Pj 2 P. Then, for each
bi;j 2 Pj 2 P, we de�ne

f(bi;j) =

�
x if bi;j = fxg
x1 � � �xk if bi;j = fx1; : : : ; xkg

as well as the relation S1 � S2 if an only if P1 � P2.
Similar to De�nition 3, we introduce an abstraction lat-

tice A, with order A1 � A2 for A1, A2 2 A that is order-
isomorphic to S (and therefore to P) and with a mapping g
for syntactic sugaring. For example, the state space fman,
woman, dogg induces a set partition P = ffman, womang,
fdoggg 2 P, which after abstraction is g(f(P )) = fperson,
dogg 2 A. Fundamentally, we map from the set partitions in-
duced by the state space of a single node into all its possible
abstract state spaces.
Given the abstraction lattice, we have the following de�ni-

tion.

De�nition 4 (Node abstraction) Let 
X̂ , 
X 2 A. If

X̂ � 
X then we say that 
X̂ abstracts 
X (and that 
X
re�nes 
X̂ ). We also use the notation X̂ � X and say that
X̂ abstracts X (and that X re�nes X̂).
For simplicity we often do not distinguish sharply between

the lattices P, S, and A. One exception is for the case of
re�nement mappings.

De�nition 5 (Re�nement mapping) Let x̂ 2 A 2 A. The
re�nement mapping �(x̂) is de�ned as �(x̂) = f�1(g�1(x̂)) .
If j�(x̂)j > 1 then x̂ is an abstracted state. If j�(x̂)j = 1 then
x̂ is an original state.



Informally, a re�nement mapping � takes an abstract state
x̂ and returns the set of its original states. For example, con-
sider 
X = fman, woman, dogg with abstraction 
X̂ =
fperson, dog} 2 A. Here, 
X̂ is derived from the set parti-
tion ffman, womang, fdog}} 2 P in an obvious way, giving
�(person) = fman, womang.
To illustrate our novel concepts, we use the internal ab-

straction operator for conditional probabilities [Chang and
Fung, 1991]. In our variant of this scheme, the inputs to ab-
straction are:

� A node X whose state space 
X is to be abstracted to
X̂ with state space 
X̂ : X̂ � X and 
X̂ � 
X .
� A re�nement mapping �, which describes how states
x̂ 2 
X̂ are mapped into states x 2 
X .

The outputs are the following:

� A new conditional distribution for X̂ , Pr0(X̂ j �X̂),
computed from X's Pr(X j �X).
� New conditional distributions for successors of X̂ ,
Pr0(SX̂ j �SX̂ ), where SX̂ is a successor (child) of X̂ ,
SX̂ 2 	X̂ .

In computing these new conditional distributions, the cen-
tral idea of Chang and Fung is to keep the effect of abstraction
and re�nement localized by maintaining the joint distribution
of the Markov blanket of the abstracted node intact, if possi-
ble. Their idea leads to the following two types of constraints
on abstraction.

De�nition 6 Let 
X � 
X̂ and suppose that x 2 
X , x̂ 2

X̂ , and x 2 �(x̂). The node constraint is

Pr(x̂ j �X) =
X
x2�(x̂)

Pr(x j �X)): (2)

Let sX 2 
SX , with SX 2 	X , and assume x 2 �SX and
x̂ 2 �̂SX . The child constraint is

Pr(sX j �̂SX ) Pr(x̂ j �X) =
X
x2�(x̂)

Pr(sX j �SX ) Pr(x j �X):

(3)

The parent and child constraints can be used to compute
CPTs for the child of a node with abstracted state x̂, using the
following form of (3):

Pr(sX j �̂SX ) =
P

x2�(x̂) Pr(sX j �SX ) Pr(x j �X)
Pr(x̂ j �X)

: (4)

We can now introduce abstraction relations between BNs,
similar to for nodes and state spaces.

De�nition 7 (Bayesian network abstraction) Consider
BNs �1 = (V 1, E1, P 1) and �2 = (V 2, E2, P 2). If

(V1;i) � 
(V2;i) for all V1;i 2 V 1 and V2;i 2 V 2, then �1
abstracts �2, which we write �1 � �2. If 
(V1;i) � 
(V2;i)
for all V1;i 2 V 1 and V2;i 2 V 2, then �1 re�nes �2, which
we write �1 � �2. If neither �1 � �2 nor �1 � �2, then
�1 and �2 are incomparable, and we write �1 k �2 (or
�2 k �1).

Given an abstracted Bayesian network �A � �R, we now
consider the situation where an explanation xA in �A ab-
stracts another explanation xR in �R, so these explanations
are closely related, for example through the use of one or
more abstraction hierarchies.

De�nition 8 (Explanation abstraction) Consider BNs
�A = (V A, EA, PA) and �R = (V R, ER, PR) where
�A � �R. Let xA be an explanation in �A and let xR be an
explanation in �R. Then xA abstracts xR, which we write
xA � xR, and xR re�nes xA, which we write xR � xA.

Suppose we have a BN �A which is an abstraction of an-
other BN �R, or �A � �R. From the point of view of fault
diagnosis using BNs, there are several reasons why �A may
be of interest, despite the fact that �R may be a more ac-
curate physical model. (i) First, �A can in some cases be
an end-result in itself; the BN �R may contain distinctions
that are irrelevant to the task at hand. For example, suppose
that �R contains a wide range of fault types, but we are in-
terested in fault detection rather than a detailed fault diag-
nosis. In this case, one way want to construct an �A, with
�A � �R, in which system health nodes only have two states,
say �healthy� and �faulty�, and all fault types are abstracted
into the latter state. (ii) Second, �A (or �A) can be consid-
ered to be a stepping-stone for computation with �R (or �R).
In this case, one may be willing to use �A perhaps even in
the face of potential loss in accuracy, because inference is
faster in �A than in �R. That said, it is clear that abstrac-
tion approaches that are guaranteed to or typically produce
�high-quality� results are of greatest interest. For instance,
we would like an MPE in �R to abstract to an explanation
that is an MPE in �A, and vice versa.

3.2 Abstraction and Hierarchies
An abstraction hierarchy is a DAG, typically a tree, which
structures the state space of a BN node. In the following we
partition the nodes V in a DAG into leaf nodes L, root nodes
R, and trunk nodes T .

De�nition 9 (Abstraction hierarchy) Let X be a BN node
with 
X = fx1; :::; xmg. An abstraction hierarchy H =
(V ;E) for X is a DAG that is a tree with exactly one root
node R 2 R, where each non-leaf node has at least two chil-
dren, and with a one-to-one mapping ` : 
X ! L, where
L � V are leaf nodes.

Abstraction hierarchies are also known as decision trees,
attribute value hierarchies [desJardins et al., 2008], and at-
tribute value taxonomies [Zhang and Honavar, 2004].
We now select nodes from an abstraction hierarchy H =

(V ;E) in order to form a new, abstract state space from an
existing state space as represented by leaf nodes inH . Note
that an arbitrary set of nodesW � V might or might not be
a valid (abstracted) state space. In an abstraction hierarchy
H = (V ;E) we say that a leaf node L 2 L � V is covered
once by some node W 2 W � V if L = W . In addition,
L is covered once for each directed path from W to L. The
number of times that L is covered inW is given by the total
number times each nodeW 2W covers L.



V

F

T

M

(a) (b)

Figure 1: Bayesian network (a) with abstraction hierarchy (b)
for the node V . For the abstraction hierarchy, a valid abstrac-
tion is indicated by shading.

De�nition 10 (Valid abstraction) Let H = (V ;E) be an
abstraction hierarchy. Let L0 � L , T 0 � T and A � V .
We de�ne A as a valid abstraction for H if each L 2 L is
covered exactly once byA.

Figure 1 shows an example BN and abstraction hierarchy
(see [Chang and Fung, 1991]). Here, M stands for military
unit type, with 
M = fb; cg. V stands for a vehicle in a
particular location, with 
V = fa; u; ng (tank, truck, or no).
T stands for terrain conditions, with 
T = fg; bg (good or
bad). F is an observable feature,
F = fa; b; og. Conditional
probability tables for this example are shown in Table 1 and
Table 2. Here, V 's state space can be abstracted from 
V =
fa; u; ng to 
V̂ = fy; ng, so 
V � 
V̂ and �(x̂) = �(y) =
fa; ug. These two valid abstractions are represented in the
abstraction hierarchy in Figure 1.

3.3 From Hierarchies to Set Partitions
To map from abstraction hierarchies to abstraction set parti-
tions, we introduce the algorithm H2SP(H;A), which takes
as input an abstraction hierarchyH and a valid abstractionA
forH , and which outputs a set S:

1. S  fg
2. For each A 2 A

(a) If A is a leaf inH then S  S [ ffAgg
(b) Else S  S [ fL0g, where L0 is the set of leaf

nodes reachable from A inH

3. Return S.

We have the following result for H2SP, where the proof is
omitted due to space restrictions.

Theorem 11 Let H be an abstraction hierarchy and let A
be a valid abstraction inH . Then S, returned by H2SP, is a
set partition over the leaf nodes inH .

In other words, if we consider the set fA j A is a valid
abstraction set for Hg, it is a subset of all set partitions for
the leaf nodes inH .

4 Computing MPEs using Abstraction
Having introduced concepts for abstraction and re�nement,
we now turn to how they can be utilized when computing
MPEs in BNs. Due to our interest in resource-bounded com-
putation, we carefully split the different computational tasks
into off-line and on-line phases.

4.1 Off-Line Computation
The purpose of off-line computation is to create a BN that
can be compiled, by different compilation algorithms, into
data structures that are optimized for on-line computation.
Creating abstractions: So far, we have assumed that ab-

straction hierarchies exist; we now brie�y discuss their gen-
esis. In some domains there are natural constraints that can
be encoded in abstraction hierarchies. An example of a do-
main where a prede�ned abstraction hierarchy is natural is in
the discretization of continuous state spaces [Liu and Well-
man, 2002]. Abstraction hierarchies can also be provided by
experts [Zhang and Honavar, 2004; desJardins et al., 2008]
or created using machine learning approaches like clustering
[Zhang and Honavar, 2004; desJardins et al., 2008].
Using abstractions: Abstraction hierarchies are created

off-line, and then used off-line to create BNs with valid ab-
stractions in polynomial time, by iterating over all the nodes
in a BN, using the appropriate abstraction and re�nement op-
erators discussed above. We create �A from another BN �R
using abstraction concepts, compile �A into an on-line data
structure �A, and then use �A, either a join tree or an arith-
metic circuit, in the on-line algorithm below.

4.2 On-Line Computation
For decision making purposes, the most important question is
whether a system computes the correct MPE, and whether the
probability is correct is not always equally important. This
observation is utilized in the following novel algorithm called
AbsMPE(�R, �A, e). For the time being, we assume that
evidence nodes are not abstracted, so the evidence is treated
exactly the same in �A, �A, �R, and �R.
1. Compute MPEs in �A, given evidence e: MPE( �A,
e) =X� = fx�1; : : : ;x�mg.

2. Compute, for each x�i 2 X�, explanations
fyi;1; : : : ;yi;�(i)g = fy j y is an explanation in
�R and y � x�i g.

3. Let Y = fy1;1; : : : ;y1;�(1)g[� � �[fyi;1; : : : ;yi;�(i)g[
� � � [ fym;1; : : : ;ym;�(m)g.

4. Form Y
0
� Y , where Y

0
= fy 2Y j Pr(y j e) �

Pr(z j e) for all z 2 Y g.
5. Return Y

0
.

Under certain assumptions, we have Y
0
= Y �, where

Y � =MPE(�R, e). Formally, we have this result.
Theorem 12 Let �A and �R be two BNs such that �A �
�R, �A is complied to �A, and assume evidence e. Let Y

� =
MPE(�R, e), and let Y

0 = AbsMPE(�R, �A, e). If any y� 2
Y � abstract into some x� 2 X� (abstraction assumption)
then Y � = Y 0.



Pr(F j V; T )
V : a u n
T : g b g b g b
a 0.4 0.1 0.6 0.4 0.1 0.2
b 0.5 0.5 0.3 0.2 0.1 0.2
o 0.1 0.4 0.1 0.4 0.8 0.6

Pr0(F j V̂ ; T )
V̂ : y n
T : g b g b
a 0.5375 0.30625 0.10 0.20
b 0.3625 0.29375 0.10 0.20
o 0.1000 0.40000 0.80 0.60

Table 1: At the top, F's conditional probability table is shown
before abstraction of 
V = fa; u; ng to 
V̂ = fy; ng, at the
bottom it is shown after abstraction.

Pr(V jM)
M : b c
a 0.3 0.1
u 0.5 0.3
n 0.2 0.6

Pr0(V̂ jM)
M : b c
y 0.8 0.4
n 0.2 0.6

Table 2: To the left V's CPT is shown before abstraction of

V = fa; u; ng to 
V̂ = fy; ng, to the right it is shown after
abstraction.

Proof. To prove Y � � Y 0, we suppose that there was some
y� 2 Y � that has an abstraction x� 2 X�, but y� =2 Y 0.
Clearly, this cannot happen since an MPE in �R obviously
will be part of Y 0. To prove Y 0 � Y �, we suppose that
there was some y0 2 Y 0, that has an abstraction x� 2 X�;
but y0 =2 Y �. In AbsMPE, Y is formed by taking re�ned
explanations y � x� for all x� 2 X�. In particular, all y�
will be taken by the abstraction assumption, thus there is in
Y 0 at least one y�1 2 Y �. Suppose that there exists some
y0 2 Y

0
such that y0 =2 Y �. By construction of AbsMPE,

we then have Pr(y0 j e) � Pr(y�1 j e) which is impossible,
concluding our proof.
Roughly speaking, the set of MPEs is the same whether it

is computed directly from �R or from �A and �R using the
steps of AbsMPE presented above.
Our work is different from related work that integrates ab-

straction and probabilistic computation [Liu and Wellman,
2002; Sharma and Poole, 2003; Verma et al., 2003] in a num-
ber of ways. Most notably, we compute MPEs, not marginals,
and we perform abstraction and re�nement off-line, not on-
line. In contrast, Sharma and Poole compute marginals using
variable elimination and do abstraction as part of inference.
Liu and Wellman perform abstraction-based iterative re�ne-
ment on-line; they also compute marginals.

4.3 Discussion and Analysis
Using a traditional approach, we compile off-line �R into a
data structure �R for which MPE(�R, e) is computed on-line.
In the AbsMPE(�R, �A, e) approach, on the other hand, �A is

compiled off-line into a compiled data structure �A, while �R
is kept as a Bayesian network. With those two approaches in
mind, the AbsMPE approach may be bene�cial when one or
more of the following conditions hold:

� The size of the compiled structure �A is very small com-
pared to the size of �R. For example, one or a few
cliques may contribute a large part of the total clique
tree size for the clique tree �R of �R, and if a few nodes
in those cliques can be abstracted, then that will reduce
the clique tree size substantially.
� The number of MPEs in �A and �A is relatively small,
such that the number of subsets used to form Y in Ab-
sMPE is not too large.
� The number of abstracted states in �A and �A is rela-
tively small, such that the size of each subset used to
form Y in AbsMPE is not too large.

We now consider in more detail the size of �A versus
that of �R. Suppose that a clique 
 2 �R contains nodes
fV1; :::; Vng. Then the cardinality of 
 is:

j
j = j
V1 j � � � � � j
Vn j;

while the cardinality of a corresponding clique 
̂ 2 �A com-
piled from abstracted BN �A is

j
̂j = j
V̂1 j � � � � � j
V̂n j;

where V̂i in �A is the abstracted node of node Vi in the
original BN �R. If a clique contains ten nodes, each with
ten states, and all abstracted nodes contain seven states, this
yields a ratio of j
̂j=j
j = 2: 824 8� 10�2. This represents a
substantial reduction in clique size, and hence in requirement
for storage and computation time, especially in light of the
moderate reduction in state space per node.

5 Case Study
As a case study, we compute probability values in two closely
related cases for Figure 1, leading to an abstracted CPT para-
meter Pr0(a j u; g) = 0:5375 as shown in Table 1. Case (i)
and Case (ii) are for the abstraction hierarchy shown in Fig-
ure 1. Case (i): Let M = b and consider node instantiations
V̂ = y, F = a, and T = g. Using (4) we then get:P

x2�(y) Pr(a j x; g) Pr(x j b)
Pr(y j b) = 0:525: (5)

Case (ii): Let M = c, with the other nodes instantiated as
above (i.e. V̂ = y, F = a, and T = g):P

x2�(y) Pr(a j x; g) Pr(x j c)
Pr(y j c) = 0:55: (6)

Now take the average of the values computed in Equation 5
and Equation 6; this gives the abstracted value

Pr 0(F = a j V̂ = y; T = g) = 0:525 + 0:55

2
= 0:5375

(7)



e MPE(�R,e) MPE(�A,e)
F M V T M V̂ T
a b u g b y g
b b a g b y g

b u g
o c n g c n g

Table 3: The MPEs for different values of the evidence vari-
able F for two different compiled BNs �R and �A. Here, �A
is an abstraction of �R in that node V̂ (in �A) is an abstraction
of V (in �R).

as shown in the CPT at the bottom of Table 1, in the column
with V = y and T = g, and the row with F = a. The other
CPT parameters can be computed in a similar way, see the
highlighted parameters of Pr0(F j V̂ ; T ) in Table 1.
Results for our case study are shown in Table 3. We con-

sider the row for F = a in detail. In this case, we obtain
Y � = MPE(�R, fF = ag) = ffM = b, V = u, T = ggg.
Since MPE(�A, fF = ag) = ffM = b, V̂ = y, T = ggg,
we have in AbsMPE (because V̂ :y � V:u and V̂ :y � V:a)
that Y = ffM = b, V = u, T = gg, fM = b, V = a,
T = ggg. Since Pr(M = b, V = u, T = g, F = a) = 0:09
and Pr(M = b, V = a, T = g, F = a) = 0:036, AbsMPE
returns Y 0 = ffM = b, V = u, T = ggg. Hence, we have
Y � = Y 0 as desired.
Total clique tree size for �A is j
̂j = 16, since clique

fM; V̂ g has size 4 and clique fV̂ ; F; Tg has size 12. The
total clique tree size for �R is j
j = 24, since clique fM;V g
has size 6 and clique fV; F; Tg has size 18.
While restricted to a small case study, this is an example of

successful abstraction for MPE computation, since the results
obtained by using AbsMPE on a smaller, abstracted clique
tree �A (size 16) along with the re�ned BN �R were exactly
the same as those obtained by computing MPEs directly on
the clique tree �R of the re�ned BN �R (size 24).

6 Conclusion
Bayesian networks are seeing increased use in arti�cial in-
telligence and other sciences and disciplines. However,
Bayesian network computation is also inherently computa-
tionally hard for most interesting inference tasks. This is the
case, for instance, for the problem of computing most proba-
ble explanations (MPEs) in Bayesian networks.
Varying the size of the state spaces of discrete BN nodes

can have an impact of several orders of magnitude on the
speed of inference. Constructing abstracted BNs based on
the use of abstraction hierarchies is consequently one promis-
ing approach to improve computational speed by BN approx-
imation. State space abstraction for BNs has been inves-
tigated earlier, however this among the �rst times abstrac-
tion has been used in the context of computing an MPE in
a Bayesian network. Speci�cally, we have made a connec-
tion between abstraction using set partitioning and abstrac-
tion using hierarchies or taxonomies. In addition, we have
emphasized the bene�t of using abstraction when compil-
ing BNs into join trees [Lauritzen and Spiegelhalter, 1988;

Jensen et al., 1990] or arithmetic circuits [Darwiche, 2003;
Chavira and Darwiche, 2007], In future work, we plan to
experiment with larger BNs as well as validate the potential
of the approach for on-line computation in resource-bounded
environments.

References
[Chang and Fung, 1991] K. Chang and R. Fung. Re�nement
and coarsening of Bayesian networks. In Uncertainty in
Arti�cial Intelligence 6, pages 435�445. 1991.

[Chavira and Darwiche, 2007] M. Chavira and A. Darwiche.
Compiling Bayesian networks using variable elimination.
In IJCAI-07, pages 2443�2449, 2007.

[Darwiche, 2003] A. Darwiche. A differential approach to
inference in Bayesian networks. Journal of the ACM,
50(3):280�305, 2003.

[desJardins et al., 2008] M. desJardins, P. Rathod, and
L. Getoor. Learning structured Bayesian network: Com-
bining abstraction hierarchies and tree-structured condi-
tional probability tables. Computational Intelligence,
24(1):1�22, 2008.

[Friedman and Goldszmidt, 1996] N. Friedman and
M. Goldszmidt. Learning Bayesian networks with
local structure. In UAI-96, pages 252�262, 1996.

[Genesereth, 1984] M. Genesereth. The use of design de-
scriptions in automated diagnosis. Arti�cial Intelligence,
24:411�436, 1984.

[Jensen et al., 1990] F. V. Jensen, K. G. Olesen, and S. K.
Andersen. An algebra of Bayesian belief universes for
knowledge-based systems. Networks, 20(5):637�659, Au-
gust 1990.

[Lauritzen and Spiegelhalter, 1988] S. Lauritzen and D. J.
Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems
(with discussion). Journal of the Royal Statistical Society
series B, 50(2):157�224, 1988.

[Liu and Wellman, 2002] C. Liu and M. P. Wellman. Eval-
uation of Bayesian networks with �exible state-space ab-
straction methods. International Journal of Approximate
Reasoning, 30:1�39, 2002.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, CA, 1988.

[Sharma and Poole, 2003] R. Sharma and D. Poole. Ef�cient
inference in large discrete domains. InUAI-03, pages 535�
542, 2003.

[Shimony, 1994] E. Shimony. Finding MAPs for belief net-
works is NP-hard. Arti�cial Intelligence, 68:399�410,
1994.

[Verma et al., 2003] V. Verma, S. Thrun, and R. Simmons.
Variable resolution particle �lter. In IJCAI-03, 2003.

[Zhang and Honavar, 2004] J. Zhang and V. Honavar. AVT-
NBL: an algorithm for learning compact and accurate
naive Bayes classi�ers from attribute value taxonomies
and data. In ICDM-04, pages 289�296, 2004.


